EN | FR
Search
Close this search box.
EN | FR
Search

Tuberculosis

Preclinical research on tuberculosis (TB) is crucial for understanding the pathogenesis of the disease and developing effective treatments and vaccines. This stage of research involves the use of animal models to study the infection and progression of Mycobacterium tuberculosis, the bacterium responsible for TB. emka & SCIREQ’s cardiopulmonary equipment plays a vital role in this process by providing advanced tools for precisely measuring and analyzing lung and cardiac function in animal models. This allows researchers to gain deeper insights into the cardiorespiratory impact of TB, evaluate the efficacy of new therapeutic interventions, and ultimately contribute to the development of strategies to combat this global health threat.

Related Products

Accurate challenges, detailed measurements

The flexiVent’s unique ability to measure central vs. peripheral airways resistance, combined with a delivered dose estimator and an automated dose-response feature permits unique and novel insights into inflammatory responses and evolution of lung function throughout the progression of infectious respiratory diseases.

As respiratory infection induces airway hyperresponsiveness and mucus hypersecretion, the flexiVent can be used to both deliver aerosol challenges to a subject’s lungs and follow the developing bronchoconstriction through automated data collection. The software calculates and displays an estimate of the dose delivered to the subject’s airway opening. Furthermore, detailed dose-response curves demonstrating airway hyperresponsiveness are computed and graphed in real-time. Learn what Dr. Davis, a researcher at the forefront of pulmonary viral infection research, has to say about working with the flexiVent.

References & Publications

Reliable physiological biopotential signals

easyTEL implantable telemetry acquires multiple biopotentials (EEG, EMG, ECG, EOG), blood pressure, temperature, and activity to study changes in sleep in relation to epilepsy, hypertension, circadian rhythms, and more in small to large animals.

While the small animal implants acquire up to 2 biopotentials for up to 150 days, the large animal implants can record up to 4 biopotentials for up to 125 days.

Symptom screening

In preclinical disease models, the analysis of ventilatory patterns in conscious subjects could prove to be useful for continuous tracking of the progression of  infectious respiratory diseases over time.

Plethysmography, as a non-invasive technique, offers a powerful means of rapidly screening subjects based on changes in ventilatory parameters (e.g. breathing frequency, tidal volume, peak inspiratory or expiratory flows) following respiratory infection. Additionally, enhanced pause (Penh) is an indicator of airway obstruction and morbidity, that quantifies changes in the shape of the breathing waveform. Events such as coughing and apneas can also be detected and monitored.

References & Publications

Resources

Request a Free Custom Literature Search

Save time evaluating SCIREQ equipment by having a SCIREQ Application Specialist conduct a custom
literature research. Researchers will receive an email report showing SCIREQ publications relevant to their specific application research area, along with custom equipment recommendations and commentary.