Respiration functions through a complex network of neural controls and feedback mechanisms as the body constantly adjusts its breathing rate and tidal volume to meet respiratory metabolic demands.
Several diseases and conditions disrupt the neurological and muscular signals, compromising the body’s ability to breathe normally. Neurologic and muscular disorders like Duchenne muscular dystrophy, amyotrophic lateral sclerosis (ALS), Pompe disease, and sleep-related breathing disorders (SRBD) are key examples of neuromotor impairment that can lead to respiratory insufficiency.
Control of breathing requires complex interactions between the brain, nerves, muscles and lungs, which should be studied simultaneously to gain a deep understanding of breathing behavior.
Whole body plethysmography permits a continuous and non-invasive assessment of breathing patterns in conscious subjects. Measurements of respiratory rate, estimated tidal volume, minute ventilation and events like apneas and deep sighs provide valuable insights into the subject’s breathing drive and behavior.
Normoxic, hypoxic and hypercapnic stimuli can be applied to challenge the subject’s respiratory system, and study its response to varying levels of O2 and CO2. These environmental controls also permit the generation of hypoxia-related disease models such as pulmonary hypertension, sleep apnea, and SIDS.
In addition to breathing pattern information, plethysmography can be extended with high-fidelity EEG/EMG signals and blood oxygen sensors, which yield further insights into a subject’s ventilatory control.
The flexiVent uses the forced oscillation technique (FOT) to probe the mechanical properties of the lungs with great detail and reproducibility in anesthetized subjects. Various pathologies and reflexes such as bronchoconstriction can dramatically alter lung mechanics (resistance, compliance, tissue mechanics). By silencing specific nerves and neurons, and performing advanced lung function measurements, scientists can isolate the contribution of various neurogenic components associated with respiratory response such as airway hyperreactivity.
easyTEL implantable telemetry acquires multiple biopotentials (EEG, EMG, ECG, EOG), blood pressure, temperature, and activity to study changes in sleep in relation to epilepsy, hypertension, circadian rhythms, and more in small to large animals.
While the small animal implants acquire up to 2 biopotentials for up to 150 days, the large animal implants can record up to 4 biopotentials for up to 125 days.
Save time evaluating SCIREQ equipment by having a SCIREQ Application Specialist conduct a custom
literature research. Researchers will receive an email report showing SCIREQ publications relevant to their specific application research area, along with custom equipment recommendations and commentary.
Please fill out the below form and a specialist will contact you as soon as possible